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Nomenclature

D horizontal length scale of the vertical channel
` acceleration of gravity
Ra Rayleigh number ð 0 `abToD

3:n5Ł
T temperature
w velocity component in the z!direction
x horizontal coordinate
z vertical coordinate[

Greek symbols
a coe.cient of thermometric expansion
d thermal perturbation
5 thermal di}usivity
n kinematic viscosity
s Prandtl number ð 0 n:xŁ[

0[ Introduction

Natural convective ~uid ~ow and attendant transport
phenomenon in a closed container have been extensively
studied[ The standard con_guration is a viscous ~uid in
a rectangular cavity whose two vertical walls are at
di}erent temperatures[ Classical treatises revealed that
the steady!state features are characterized by three prin!
cipal non!dimensional parameters\ i[e[\ the system Ray!
leigh number Ra\ the Prandtl number s and the container
aspect ratio Ar "see e[g[\ ð0Ð2Ł#[ Of particular interest is
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the case when there exists a prevailing vertical strati!
_cation\ in addition to a temperature contrast in the
horizontal direction which is applied between the two
vertical sidewalls[ This problem\ in the steady!state\ was
tackled by theoretical endeavors "e[g[ ð1Ð3Ł#[ The ana!
lytical procedure was focused on an exact solution of
the Boussinesq equation in an in_nite vertical layer[ By
examining the asymptotic structure of the base ~ow for
large Ra\ it is shown that the mass ~ux is carried by the
boundary layer of thickness O"Ra−0:3# on the vertical
wall[ This type of boundary layer has been termed the
buoyancy layer and the dynamical signi_cance of this
layer has been asserted in a wide variety of strongly
strati_ed ~uid systems "e[g[ ð4\ 5Ł#[

A perusal of the relevant literature points to the fact
that the majority of investigations on natural convection
in an enclosure have been concerned with steady!state
situations[ Time!dependent ~ows of buoyant convection
in a cavity have received far less attention "e[g[ ð6Ł#[ As
observed by Jischke and Doty ð7Ł\ this scarcity does not
imply that the time!dependent processes are in any way
less important[ Rather\ this is re~ective of the formidable
di.culties involved in dealing with time!dependent con!
vection problems in general[

As stressed in the above\ although the steady!state
features of the buoyancy layer have been portrayed to
some extent\ the transient processes of formation and
evolution of this layer have not been explored[ In this
paper\ a straightforward analysis is made of the transient
behavior of the buoyancy layer\ which is generated by an
impulsive step!change of temperature at the wall[ By
resorting to the eigenfunction expansion method\ a com!
plete formal solution is sought to the governing unsteady
equations of motion for the buoyancy layer on an in_nite
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vertical wall[ The results of these mathematical exercises
are revealing] there exist two modes in the transient
process\ i[e[\ one represents a non!oscillatory approach
and the other an oscillatory approach to the steady state[
The criterion in the RaÐs diagram for these two modes
is ascertained[

1[ Transient buoyancy layer on an in_nite wall

An incompressible ~uid is contained in a vertically
in_nite channel of width 1D[ The Cartesian coordinates
"x\ z# denote\ respectively\ the horizontal and vertical
directions\ with the origin located at the geometric center[

In the initial state\ the ~uid is at rest and a vertically!
linear stable strati_cation prevails\ i[e[\ T � To"0¦bz#\ in
which To refers to the reference temperature at the origin[

At the initial instant\ t � 9\ the temperature at the right
"left# vertical sidewall is abruptly increased "decreased#
uniformly by DT[ The steady solution for this problem
set!up was secured by Batchelor ð0Ł\ in which the resultant
~uid motion was shown to be a parallel vertical ~ow[ The
comprehensive stability analysis "e[g[ ð3Ł# of this parallel
~ow identi_ed the stable region in the "RaÐs# parameter
space[ In the present work\ ensuing analyses will be con!
_ned to this stable region of the pertinent parameter
space\ and therefore\ the assumption of parallel ~ow can
be taken to be physically reasonable[ Accordingly\ the
~ow variables are assumed to be functions of x and t[

It is advantageous to introduce the non!dimensional
quantities\ denoted by a prime]

"x\ z# � "x?D\ z?D#\ t � t?"D1:5#\ w? �w:"5:D#\

T? � ðT−To"0¦bz#Ł:"bToD#\ p? � 0
p
r91

D1

v5
[

The governing time!dependent equations in dimen!
sionless forms\ can be written "after dropping the prime
from non!dimensional quantities#]

0
s

1w
1t

� Ra = T¦
11w

1x1
"0#

1T
1t

¦w �
11T

1x1
[ "1#

In the above\ the principal dimensionless parameters
emerge] s and Ra[ Note that the temperature scale in the
de_nition of Ra in the present study is bToD[

The initial conditions may be stated as] w � T � 9 at
t ¾ 9[ In accordance with the problem statement\ the
boundary conditions are]

at the vertical wall ðx �20Ł\ w � 9 and

T �2d\ ðd 0 DT:"bToD#Ł[

Notice that\ in the present study\ the strength of the
thermal forcing at the vertical walls is denoted by d[

The solution to the above equations is split into two

parts] w"x\ t# �ws"x#¦wu"x\ t# and T"x\ t# �Ts"x#
¦Tu"x\t#\ in which the subscripts s and u indicate\ respec!
tively\ the steady and transient parts[

As remarked earlier\ the steady solution satis_es the
no!slip velocity conditions as well as the di}erential!tem!
perature conditions at the two vertical walls[ This exact
solution is well documented "e[g[ð0\ 2\ 3Ł#]

Ts"x# �
0
1

d 0
sinh "l0x#
sinh "l0#

¦
sinh "l1x#
sinh "l1# 1 "2#

and

ws"x# �
d

1 0
l1

0 sinh"l0x#
sinh "l0#

¦
l1

1 sinh "l1x#
sinh "l1# 1 "3#

in which l0 � "Ra:3#0:3 = "0¦i# and l1 � "Ra:3#0:3 =

"−0¦i#\ i1 0 −0[
Obviously\ in the limit Ra ð 0\ Ts"x# ½ d = x and

ws ½ d"Ra:5#"x−x2#\ which indicates a conduction!domi!
nant regime[

In the opposite limit Ra Ł 0\ the well!known result is
recovered ð3Ł]

Ts ½ d"=x=:x# exp "R"=x=−0## = cos "R"=x=−0##

and

ws ½ −d = R =
=x=
x

exp "R"=x=−0## = sin "R"=x=−0##\

where R 0 "Ra:3#0:3[

Now\ the task is directed to the transient solution[ The
governing equation can be rewritten as

0
s

11Fu

1t1
−00¦

0
s1

1

1t
11Fu

1x1
¦

13Fu

1x3
¦RaFu � 9 "4#

with the boundary condition Fu"x � 20\ t# � 9\ in which
F denotes T or w[ The solution is sought in the form

Tu"x\ t# � s
�

n�9

Tn"x\ t# and wu"x\ t# � s
�

n�9

wn"x\ t#[ "5#

Substituting the expression wn"x\ t# � exp "ant# = sin "npx#
into equation "4# and after re!arranging\ the eigenvalues
an|s are obtained]

an0\1
� −

"s¦0#"np#1

1
2

z"s−0#1"np#3−3s Ra
1

[ "6#

Note that an0\1
are real only when "s−0#1p3 × 3s Ra[

The corresponding eigenfunction Tn and wn can be
rewritten as

wn"x\ t# � "Cn0
exp "an0

t#¦Cn1
exp "an1

t## = sin "npx# "7a#

and from equation "0#

Tn"x\ t# � 0Cn0

an0
¦s"np#1

s Ra
exp "an0

t#

¦Cn1

an0
¦s"np#1

s Ra
exp "an1

t#1 = sin "npx#[ "7b#
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The complex!valued constants Cn0
and Cn1

are determined
by making use of the initial!state _elds that w"x\ 9# �
ws"x#¦wu"x\ 9# � 9\ 1w"x\ 9#:1t � 1"ws"x#¦wu"x\ 9##:
1t � 9 in the region −0 ³ x ³ 0[ These considerations
yield

Cn0
�

an1

an0
−an1

g
0

−0

ws"x# = sin "npx# dx

and

Cn1
�

−an0

an0
−an1

g
0

−0

ws"x# = sin "npx# dx[

Consequently\ the complete formal solution is given as

T"x\ t# � Ts"x#¦"Tu"x\ t#

�
0
1

d 0
sinh "l0x#
sinh "l0#

¦
sinh "l1x#
sinh "l1# 1

¦ s
�

n�0 $Cn0

"an0
¦s"np#1#

s Ra
exp "an0

t#

¦Cn1

"an1
¦s"np#1#

s Ra
exp "an1

t#% = sin "npx# "8a#

and

w"x\ t# � ws"x#¦wu"x\ t#

�
d

1 0
l1

0 sinh "l0x#
sinh "l0#

¦
l1

1 sinh "l1x#
sinh"l1# 1

¦ s
�

n�0

"Cn0
exp "an0

t#¦Cn1
exp "an1

t## = sin "npx#[

"8b#

The series solutions of equations "8a# and "8b# converge
rapidly[ To check the accuracy of this solution\ com!
panion numerical solutions of equations "0# and "1# were
obtained using a backward di}erence in time and a cen!
tral di}erence in space on a uniform grid of 390 points[
As displayed in Fig[ 0\ the series solution summing up to
the 49th term is in good agreement with the full numerical
solution[

As can be readily seen in equation "6#\ if
"s−0#1p3 ³ 3s Ra\ at least one of the in_nite eigenmodes
becomes imaginary[ Since n − 0\ the general temporal
character of the temperature _eld is oscillatory or non!
oscillatory if "s−0#1p3 M 3s Ra\ indicating whether or
not the solution has at least one imaginary eigenmode[
The demarcation line in the sÐRa diagram is illustrated
in Fig[ 1[ For a given value of Ra\ in Regimes I and III\
the transient process is non!oscillatory[ Qualitatively\ in
Regime I "III#\ the Prandtl number is generally very low
"high#[ Crudely speaking\ this implies that the overall
process is conduction "convection#!dominant\ which
points to a stronger in~uence of one particular mode of
heat transfer than the other[ In Regime II\ the Prandtl
number is intermediate[ Again\ this suggests that the con!

Fig[ 0[ Time history of] "A# temperature^ and "B# vertical
velocity[ x � 9[8\ Ra � 092 and s � 0[9[ The abscissa denotes
the time scaled as t 0 t:"1p×Ra−0:1×s−0:1#[ *\ series solutions
from equation "8#^ ž\ numerical solutions of equations "0# and
"1#[

Fig[ 1[ Regime classi_cations in the "RaÐs# diagram[ The bound!
ary curve is given by Ra � "s−0#1p3:3s[

duction e}ect in the horizontal direction and the ver!
tically!directed convection e}ect are comparable and
competing[ These produce an environment which is prone
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to oscillatory behavior[ As is evident in Fig[ 1\ as Ra
increases\ the range of s for which oscillation is possible
is enlarged[ In particular\ equation "6# indicates that\ if
s � 0\ the transient process is oscillatory[ For this case\
the frequency of oscillation is precisely the BruntÐVaisala
frequency of the system\ Ra0:1[

It is worth noting that the oscillatory behavior itself
may not be signi_cant\ since oscillations are short!lived
and they are damped out at large times[ However\ the
oscillatory character will sustain if the wall conditions
are continuously time!varying "e[g[ ð8Ł#[ It is important
to point out that the present solutions for step!changes
can be superposed to produce approximate solution for
continuously time!dependent wall conditions[

Representative time!histories of temperature are
demonstrated in Figs[ 2"I#\ "II# and "III#\ illustrating\
respectively\ Regimes "I#\ "II# and "III#[ The bottom frame
shows the overall trend and the top frame exhibits the
magni_ed view showing the approach to the steady!state[
The spatial location is at x � 9[8\ which lies well inside
the boundary layer[ The evolutionary process of the tem!
perature _eld in the buoyancy layer is\ in general\ gov!
erned by s and Ra[ The strong in~uence of s in the case
of transient process is in contrast to the case of steady!
state\ in which the major ~ow features are substantially
independent of s ð2\ 3Ł[ As can be inferred in Fig[ 2"I# for
a low Prandtl number\ a strong horizontal heat con!
duction in the initial stage causes the temperature to
overshoot the steady!state value[ The oscillatory

Fig[ 2[ Time history of temperature[ Ra � 092 and x � 9[8[ The top frame shows a magni_ed picture and the bottom frame describes
the overall behavior[ The abscissa denotes the time scaled as t 0 t:"1p×Ra−0:1×s−0:1#[ The Prandtl number s is] "I# 9[90^ "II# 0[9^ "III#
299[

behavior\ typical of Regime "II#\ is apparent in Fig[ 2"II#[
Figure 2"III#\ exemplifying Regime "III#\ portrays the
monotonic approach[

In passing\ it is emphasized again that the present
solution under the parallel!~ow assumption is dealt with
in the stable region in the relevant parameter space\ as
remarked explicitly previously[ Therefore\ the present
solution within the stated framework should be in quali!
tative agreement with the result obtainable by solving
directly the full governing NavierÐStokes equations[

2[ Concluding remarks

The mathematical analysis produced a complete for!
mal solution for the transient buoyancy layer for an in_!
nite vertical wall[ The character of the transient layer
shows a strong dependence on s\ which is in contrast to
the case of the steady!state layer[ The transitory approach
to the steady!state is non!oscillatory or oscillatory\
depending on "s−0#1 m 3s Ra[
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